

Année universitaire 2014/2015

LICENCE 2^{ème} année Economie – Gestion

Semestre 4 - Session 1 / Examens Mai 2015

Mathématiques 4 (M. Matmour)

Durée: 2h

Tous documents interdits

Calculatrice autorisée

Sujet:

Exercice 1. (6 points)

Soit le système suivant : $\begin{cases} 2x + 3y + z = 4 \\ -x + my + 2z = 5 \end{cases}$ m étant un paramètre réel. 7x + 3y + (m - 5)z = 7

1. Mettre ce système sous forme la matricelle : AX = B.

- 2. Calculer le déterminant de A sous forme factorisée et indiquer pour quelles valeurs de m ce système est de Cramer.
- 3. Résoudre ce système suivant les valeurs de m en appliquant la méthode de Cramer.

Exercice 2, (10 points)

On considère la matrice : $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 2 & 3 \end{pmatrix}$

1. a) Calculer le déterminant de la matrice. Déterminer son inverse avec la méthode des cofacteurs.

b) Déterminer le rang de cette matrice.

- 2. a) Calculer le polynôme caractéristique de la matrice A sous forme factorisée.
 - b) Déterminer les valeurs propres de la matrice A ainsi que les vecteurs propres associés.

c) La matrice A est-elle diagonalisable ?Justifier votre réponse.

3. a) Déterminer une matrice inversible S telle que $S^{-1}AS = D$ où D est une matrice à préciser.

b) Déterminer la matrice S^{-1} .

c) A l'aide d'un raisonnement par récurrence, montrer que $\forall n \in \mathbb{N}$ on a : $A^n = SD^nS^{-1}$.

d) En déduire l'expression de la matrice A^n pour tout $n \in \mathbb{N}$. (Détailler les calculs)

4. Démontrer à l'aide d'un raisonnement par récurrence le résultat trouvé à la question 3.d).

Exercice 3. (4 points)

1. On considère l'équation différentielle : $y'' - y' - 2y = (-6x - 4)e^{-x}$ (E₀)

1. Résoudre l'équation différentielle : y'' - y' - 2y = 0.

- 2. Soit y_p la fonction définie par : $y_p(x) = (x^2 + 2x)e^{-x}$. Démontrer que $y_p(x)$ est une solution particulière de (E_0) .
- 3. Déterminer la solution y(x) de l'équation différentielle (E_0) qui vérifie les conditions initiales y(0) = 1 et y'(0) = 1
- 2. On considère l'équation différentielle : y' 4y = -8x 2 (E₀)

1. Résoudre l'équation différentielle : -y' - 4y = 0.

2. Déterminer la solution particulière de (E_0) .

3. Déterminer la solution y(x) de l'équation différentielle (E_0) qui vérifie la condition initiale : y(0) = 1