des sciences économiques et de gestion

Université de Strasbourg

Année universitaire 2018/2019

LICENCE Economie-Gestion 2^{ème} année

Semestre 4 - Session 1 / Contrôle terminal mai 2019

Matière: Mathématiques IV (M. BRECKLE)

Durée: 2h

Aucun document autorisé. Calculatrice interdite.

PARTIE 1 : Systèmes linéaires (2,5 points)

- 1. Résoudre le système : $\begin{cases} x + y + 2z = 3 \\ x + 2y + z = 1 \\ 2x + y + z = 0 \end{cases}$ (1 point)
- 2. Résoudre le système : $\begin{cases} 2x y + 3z = 1 \\ -4x + 2y + z = 3 \\ -2x + y + 4z = 4 \\ 10x 5y 6z = -10 \end{cases}$ (1,5 point)

PARTIE 2: Espaces vectoriels (6 points)

Soit
$$E = \{(x, y, z) \in \mathbb{R}^3, x + y - 2z = 0 \text{ et } 2x - y - z = 0\}$$
 et soit $F = \{(x, y, z) \in \mathbb{R}^3, x + y - z = 0\}$

Soient $u_1 = (1,1,1), u_2 = (1,0,1)$ et $u_3 = (0,1,1)$

- 1. Justifier que F est un sous-espace vectoriel de \mathbb{R}^3 . (0,5 point)
- Justifier que E est un sous-espace vectoriel de R³. (0,5 point)
- 3. Déterminer une famille génératrice de E. Justifier que cette famille est une base. (1 point)
- 4. Montrer que $\{u_2, u_3\}$ est une base de F. (1 point)
- 5. Montrer que $\{u_1, u_2, u_3\}$ est une famille libre de \mathbb{R}^3 . (1 point)
- 6. A-t-on $E \oplus F = \mathbb{R}^3$? Justifier. (1 point)
- 7. Soit $v = (x, y, z) \in \mathbb{R}^3$. Exprimer le vecteur v dans la base $\{u_1, u_2, u_3\}$. (1 point)

PARTIE 3 : Diagonalisation de matrice (6,5 points)

On considere la matrice
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$

- 1. Déterminer le polynôme caractéristique de A. (0,5 point)
- Déterminer les valeurs propres de A et les sous-espaces propres associés à ces valeurs propres. (2 points)
- 3. Montrer que A est diagonalisable et donner la matrice D, matrice diagonale associée à A. (0,5 point)
- 4. Déterminer une base de vecteurs propres et donner la matrice de passage P et calculer son inverse P^{-1} . (1 point)
- 5. Quelle relation lie les matrices A, D, P et P^{-1} ? (0,5 point)
- 6. Exprimer D^n en fonction de n pour tout $n \in \mathbb{N}^*$ puis donner une relation entre A^n , D^n , P et P^{-1} . (0.5 point)
- 7. Exprimer alors A^n en fonction de D^n et en déduire l'expression de A^n pour tout $n \in \mathbb{N}^n$. (1,5 point)

PARTIE 4 : Applications linéaires (5 points)

Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ une application définie pour tout vecteur $u = (x, y, z, t) \in \mathbb{R}^4$ par : f(u) = (x - 2y, x - 2y, 0, x - y - z - t)

- 1. Montrer que f est une application linéaire. (0,5 point)
- 2. Déterminer le noyau de f, noté Ker(f) et en donner une base. (1 point) Quelle est la dimension de l'image de f? Justifier. (0,5 point)
- 3. Déterminer Im(f) et en donner une base. (1 point)
- 4. L'application f est-elle injective? surjective? bijective? Justifier. (1 point)
- 5. A-t-on $Ker(f) \oplus Im(f) = \mathbb{R}^4$? Justifier. (1 point)