Contrôle continu #2 de Probabilités

Troisième année de la double Licence Mathématiques et Economie Année 2018 - 2019

Durée : 1h. Les calculatrices et téléphones portables sont interdits

Exercice 1 – On se place sur l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On définit sur cet espace une mesure μ_1 donnée pour tout c>0 par

$$\mu_1 = c \sum_{i=1}^{.3} i \delta_i,$$

où δ_i est la mesure de Dirac en i.

- 1) Rappeler la définition de la mesure de Dirac.
- 2) Montrer que μ_1 est une mesure.
- 3) Donner la valeur de c pour que μ_1 soit une mesure de probabilité.
- 4) Soit $X_1:(\Omega_1,\mathcal{F}_1,\mathbb{P}_1)\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ une variable aléatoire de loi μ_1 . Calculer $\mathbb{E}(X_1)$.

On définit à présent sur l'espace $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ la mesure μ_2 qui est à densité par rapport à la mesure de Lebesgue de densité $f(x) = \exp(-x)\mathbb{I}_{[0,+\infty[}(x)$.

5) Soit $X_2: (\Omega_2, \mathcal{F}_2, \mathbb{P}_2) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une variable aléatoire de loi μ_2 . Donner l'expression de la fonction de répartition F_2 de X_2 . Calculer $\mathbb{E}(X_2)$.

~

Soit $X:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une variable aléatoire de loi $\mu=\mu_1/4+3\mu_2/4$.

- 6) Donner l'expression de la fonction de répartition de X.
- 7) Calculer l'espérance de X.

Exercice 2 – Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. On considère la variable aléatoire $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{N}, \mathcal{P}(\mathbb{N}))$ de loi \mathbb{P}_X qui est à densité par rapport à la mesure de comptage

$$\mu = \sum_{i \in \mathbb{N}} \delta_i$$

de densité la fonction positive et mesurable $f:(\mathbb{N},\mathcal{P}(\mathbb{N}))\to(\mathbb{R}^+,\mathcal{B}(\mathbb{R}^+))$ définie par $f(x)=1/2^{x+1}$.

- 1) On note F la fonction de répartition de X. Montrer que F(t)=0 pour tout t<0 et que, pour $t\in[n-1,n[,n\in\mathbb{N}\setminus\{0\},F(t)=1-2^{-n}]$.
- Calculer l'espérance de X. Vous pourrez utiliser au choix l'une des deux méthodes suivantes :